ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Benjamin A. Lindley, N. Zara Zainuddin, Paolo Ferroni, Andrew Hall, Fausto Franceschini, Geoffrey T. Parks
Nuclear Technology | Volume 185 | Number 2 | February 2014 | Pages 147-173
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-54
Articles are hosted by Taylor and Francis Online.
Multiple recycle of transuranic (TRU) isotopes in thermal reactors results in a degradation of the plutonium (Pu) fissile quality with buildup of higher actinides (e.g., Am, Cm, Cf), some of which are thermal absorbers. These phenomena lead to increasing amounts of Pu feed being required to sustain criticality and accordingly larger TRU content in the multirecycled fuel inventory, ultimately resulting in a positive moderator temperature coefficient (MTC) and void reactivity coefficient (VC). Because of the favorable impact fostered by use of thorium (Th) on these coefficients, the feasibility of Th-TRU multiple recycle in reduced-moderation (RM) pressurized water reactors (PWRs) and RM boiling water reactors (called RMPWRs and RBWRs, respectively) has been investigated. In this paper, Part II of two companion papers, the results of the single-assembly analyses of Part I are developed to investigate full-core feasibility. A large reduction in moderation is necessary to allow full actinide recycle. This increases the core pressure drop, which poses some thermal-hydraulic challenges, which are more pronounced if the design implementation is through retrofitting an existing PWR. For a given reactor cooling pump, the core flow rate is reduced. Despite this, it is possible to achieve feasible inlet and outlet temperatures and minimum departure from nucleate boiling ratio, for the reduction in moderation considered here. Reflood after loss-of-coolant accident is expected to be slower, which may lead to unacceptable peak clad temperatures and/or clad oxidation. Equilibrium cycles are presented for the RMPWR and RBWR, with a negative MTC and VC. However, the RMPWR may have positive reactivity when fully voided, and the hard spectrum makes it difficult to achieve an adequate shutdown margin, such that for the considered fuel designs, additional rod banks would be required.