ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
High temperature fission chambers engineered for AMR/SMR safety and performance
As the global energy landscape shifts towards safer, smaller, and more flexible nuclear power, Small Modular Reactors (SMRs) and Gen. IV* technologies are at the forefront of innovation. These advanced designs pose new challenges in size, efficiency, and operating environment that traditional instrumentation and control solutions aren’t always designed to handle.
Mario Dalle Donne, Claudio Ferrero
Nuclear Technology | Volume 80 | Number 1 | January 1988 | Pages 133-152
Technical Paper | Advanced Light Water Reactor / Fission Reactor | doi.org/10.13182/NT88-A35554
Articles are hosted by Taylor and Francis Online.
Loss-of-coolant-accident (LOCA) and anticipated transient without scram (ATWS) calculations have been performed for the two Kernforschungszentrum Karlsruhe advanced pressurized water reactor reference designs (a homogeneous reactor with p/d = 1.2 and a heterogeneous reactor), for a homogeneous reactor with a tighter fuel rod lattice (p/d = 1.123), and for a reference pressurized water reactor (PWR). The calculations have been performed with the Ispra version of the code RELAP5/MOD1. New correlations have been introduced in the code to account for the core geometry, which is different from that of a PWR. The results of the calculations show that during the LOCA the fuel rod cladding hot spot temperatures in the seed of the heterogeneous reactor reach values ∼250°C higher than the corresponding temperatures for a PWR. The results also show that during the ATWS the pressure inside the primary circuit exceeds the maximum allowable pressure in the case of the homogeneous reactor with p/d = 1.123. Based on the present calculations, only the homogeneous reactor with p/d =1.2 appears to be acceptably safe. Of course, these results need experimental confirmation.