ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Mario Dalle Donne, Claudio Ferrero
Nuclear Technology | Volume 80 | Number 1 | January 1988 | Pages 133-152
Technical Paper | Advanced Light Water Reactor / Fission Reactor | doi.org/10.13182/NT88-A35554
Articles are hosted by Taylor and Francis Online.
Loss-of-coolant-accident (LOCA) and anticipated transient without scram (ATWS) calculations have been performed for the two Kernforschungszentrum Karlsruhe advanced pressurized water reactor reference designs (a homogeneous reactor with p/d = 1.2 and a heterogeneous reactor), for a homogeneous reactor with a tighter fuel rod lattice (p/d = 1.123), and for a reference pressurized water reactor (PWR). The calculations have been performed with the Ispra version of the code RELAP5/MOD1. New correlations have been introduced in the code to account for the core geometry, which is different from that of a PWR. The results of the calculations show that during the LOCA the fuel rod cladding hot spot temperatures in the seed of the heterogeneous reactor reach values ∼250°C higher than the corresponding temperatures for a PWR. The results also show that during the ATWS the pressure inside the primary circuit exceeds the maximum allowable pressure in the case of the homogeneous reactor with p/d = 1.123. Based on the present calculations, only the homogeneous reactor with p/d =1.2 appears to be acceptably safe. Of course, these results need experimental confirmation.