ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Michael F. Roche, Leonard Leibowitz, Jack L. Settle, Carl E. Johnson, Richard C. Vogel, Robert L. Ritzman
Nuclear Technology | Volume 96 | Number 1 | October 1991 | Pages 96-116
Technical Paper | Material | doi.org/10.13182/NT91-A35536
Articles are hosted by Taylor and Francis Online.
The vaporization of strontium, barium, and lanthanum from mixtures of their oxides with urania, zir-conia, and concrete is determined with the objective of understanding the release of these refractory fission products during the core/concrete interaction phase of a degraded core accident. The vaporization of uranium and the total mass vaporized are also determined. Three different concretes having silica contents ranging from 7 to 69 wt% are used to reflect the known range of reactor basemat compositions. In the experiments, the mixtures are vaporized at 2150 or 2400 K into flowing H2 or He-6 H2 gas. The total mass of material that was vaporized is determined by weighing the condensates; the masses of individual elements are determined by chemical analyses of the condensates. The phases present in the heated mixtures are inferred from electron probe microanalyses and X-ray diffraction analyses. Equilibrium calculations are performed using SOLGASMIX and a thermodynamic data base containing 112 gaseous and 108 condensed species. The partial molar free energy of oxygen is calculated from the equilibrium oxygen pressure established in the high-temperature reaction zone between the gas and the sample. Using this experimental data, the release to be expected in the molten core/concrete interaction phase of a severe nuclear reactor accident is estimated. The estimated release of strontium, barium, lanthanum, and uranium is <1% with a basemat concrete of low silica content (7 wt%) and decreases to <0.01% with a basemat concrete of high silica content (69 wt%). The estimated total mass release is ∼0.5% with all three concrete types.