ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
O. Graf, A. Bayer
Nuclear Technology | Volume 96 | Number 1 | October 1991 | Pages 50-71
Technical Paper | Nuclear Safety | doi.org/10.13182/NT91-A35533
Articles are hosted by Taylor and Francis Online.
Realistic probabilistic safety assessment and risk studies for nuclear power facilities and for emergency planning call for detailed knowledge of the shielding properties of buildings. The investigations described here focus on the building types encountered in central Europe, with its high population density. The necessary dose rate calculations are performed with a new combination of the point kernel integration technique (the QAD-CG-E code) and the Sn transport method (the DOT 4.2 code). This procedure seems to be optimal for irregular three-dimensional shielding structures, providing good accuracy and performing a great number of individual calculations. The validity and accuracy of the procedure are checked by Monte Carlo calculations (the SAM-CE code) and by recalculating a U.S. shielding experiment. The evaluation of literature and the examination of data led to a list of 12 building types representative of those in central Europe. The geometries of the buildings are composed of ∼150 to 300 basic geometrical bodies. This is the input for the QAD-CG-E computer code (i.e., combinatorial geometry). Shielding calculations are performed for these 12 building types assuming contamination by 137Cs. The high-rise apartment and row house building types show a good shielding efficiency (a shielding factor <0.1), while the bungalow and prefabricated house offer the lowest shielding value (a shielding factor of 0.3). The other building types have a mean shielding factor value of 0.1. Additional calculations with 131I and 140La show the influence of the gamma energy on the shielding factor. Moreover, gamma fields or spatial dose rate distributions are calculated for a semidetached house, a prefabricated house, and a high rise. The results are presented by isodose lines drawn through vertical and horizontal cross sections of the buildings.