ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
O. Graf, A. Bayer
Nuclear Technology | Volume 96 | Number 1 | October 1991 | Pages 50-71
Technical Paper | Nuclear Safety | doi.org/10.13182/NT91-A35533
Articles are hosted by Taylor and Francis Online.
Realistic probabilistic safety assessment and risk studies for nuclear power facilities and for emergency planning call for detailed knowledge of the shielding properties of buildings. The investigations described here focus on the building types encountered in central Europe, with its high population density. The necessary dose rate calculations are performed with a new combination of the point kernel integration technique (the QAD-CG-E code) and the Sn transport method (the DOT 4.2 code). This procedure seems to be optimal for irregular three-dimensional shielding structures, providing good accuracy and performing a great number of individual calculations. The validity and accuracy of the procedure are checked by Monte Carlo calculations (the SAM-CE code) and by recalculating a U.S. shielding experiment. The evaluation of literature and the examination of data led to a list of 12 building types representative of those in central Europe. The geometries of the buildings are composed of ∼150 to 300 basic geometrical bodies. This is the input for the QAD-CG-E computer code (i.e., combinatorial geometry). Shielding calculations are performed for these 12 building types assuming contamination by 137Cs. The high-rise apartment and row house building types show a good shielding efficiency (a shielding factor <0.1), while the bungalow and prefabricated house offer the lowest shielding value (a shielding factor of 0.3). The other building types have a mean shielding factor value of 0.1. Additional calculations with 131I and 140La show the influence of the gamma energy on the shielding factor. Moreover, gamma fields or spatial dose rate distributions are calculated for a semidetached house, a prefabricated house, and a high rise. The results are presented by isodose lines drawn through vertical and horizontal cross sections of the buildings.