ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Shlomo Ron, Judah Tzoref
Nuclear Technology | Volume 96 | Number 1 | October 1991 | Pages 37-49
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT91-A35532
Articles are hosted by Taylor and Francis Online.
The potential release of fission products during a beyond-design accident in a medium-sized high-temperature gas reactor (the HTR-500) is investigated. The DSNP modular simulation code is used to simulate a depressurization accident as well as the failure of the forced circulation of the decay heat removal systems to actuate. For such an extreme accident, the calculated maximum localized fuel temperature reaches 3040° C 43 h after the beginning of the accident. During the heatup, 3.4% of the 137Cs inventory is found to be released from the fuel elements to the primary circuit, and 4.6 × 10−2% is estimated to be released into the environment. The carbon monoxide and helium releases from the graphite matrix prove to be an important factor in sweeping the fission products from the primary circuit. The comparative consequence analysis indicates a much lower risk than in the analogous light water reactor severe accident. A design-base depressurization accident is also investigated at the beginning of the study and involves the operation of one out of the two redundant decay heat removal systems.