ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Junichi Yamashita, Akira Nishimura, Takaaki Mochida, Osamu Yokomizo
Nuclear Technology | Volume 96 | Number 1 | October 1991 | Pages 11-19
Technical Paper | Fission Reactor | doi.org/10.13182/NT91-A35529
Articles are hosted by Taylor and Francis Online.
A new boiling water reactor (BWR) core concept that meets various requirements for a next-generation light water reactor is proposed. This BWR core can be operated as either a high-burnup core or a high-conversion core simply by replacing the fuel assemblies and control rods. The high-burnup core is suitable for a once-through nuclear fuel cycle and has a low fuel cycle cost due to the adoption of advanced spectral shift technology. The high-conversion core is suitable for nuclear fuel recycling and reaches a high-conversion ratio by adopting a tight-lattice arrangement of mixed-oxide fuel rods in the fuel assemblies and using control rods with a zirconium follower. The reactor structures are essentially identical, and they are designed to be as simple as the current BWR to achieve high reliability. The reactor core also has high operability due to the spectral shift water rods that are operated with all control rods withdrawn. At reactor shutdown, the core has a large reactivity control capability due to the cruciform control rods with wider blades and has an ample safety margin.