ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Congress passes new nuclear funding
On January 15, in an 82–14 vote, the U.S. Senate passed an Energy and Water Development appropriations bill to fund the U.S. Department of Energy for fiscal year 2026 as part of a broader package that also funded the U.S. Army Corps of Engineers and the U.S. Bureau of Reclamation.
Junichi Yamashita, Akira Nishimura, Takaaki Mochida, Osamu Yokomizo
Nuclear Technology | Volume 96 | Number 1 | October 1991 | Pages 11-19
Technical Paper | Fission Reactor | doi.org/10.13182/NT91-A35529
Articles are hosted by Taylor and Francis Online.
A new boiling water reactor (BWR) core concept that meets various requirements for a next-generation light water reactor is proposed. This BWR core can be operated as either a high-burnup core or a high-conversion core simply by replacing the fuel assemblies and control rods. The high-burnup core is suitable for a once-through nuclear fuel cycle and has a low fuel cycle cost due to the adoption of advanced spectral shift technology. The high-conversion core is suitable for nuclear fuel recycling and reaches a high-conversion ratio by adopting a tight-lattice arrangement of mixed-oxide fuel rods in the fuel assemblies and using control rods with a zirconium follower. The reactor structures are essentially identical, and they are designed to be as simple as the current BWR to achieve high reliability. The reactor core also has high operability due to the spectral shift water rods that are operated with all control rods withdrawn. At reactor shutdown, the core has a large reactivity control capability due to the cruciform control rods with wider blades and has an ample safety margin.