ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Donald D. Hines, Rodney L. Grow, Lance J. Agee
Nuclear Technology | Volume 148 | Number 1 | October 2004 | Pages 25-34
Technical Paper | RETRAN | doi.org/10.13182/NT04-A3545
Articles are hosted by Taylor and Francis Online.
As part of an overall verification and validation effort, the Electric Power Research Institute's (EPRIs) CORETRAN-01 has been benchmarked against Northern States Power's Prairie Island and Monticello reactors through 12 cycles of operation. The two Prairie Island reactors are Westinghouse 2-loop units with 121 asymmetric 14 × 14 lattice assemblies utilizing up to 8 wt% gadolinium while Monticello is a General Electric 484 bundle boiling water reactor. All reactor cases were executed in full core utilizing 24 axial nodes per assembly in the fuel with 1 additional reflector node above, below, and around the perimeter of the core. Cross-section sets used in this benchmark effort were generated by EPRI's CPM-3 as well as Studsvik's CASMO-3 and CASMO-4 to allow for separation of the lattice calculation effect from the nodal simulation method. These cases exercised the depletion-shuffle-depletion sequence through four cycles for each unit using plant data to follow actual operations. Flux map calculations were performed for comparison to corresponding measurement statepoints. Additionally, start-up physics testing cases were used to predict cycle physics parameters for comparison to existing plant methods and measurements.These benchmark results agreed well with both current analysis methods and plant measurements, indicating that CORETRAN-01 may be appropriate for steady-state physics calculations of both the Prairie Island and Monticello reactors. However, only the Prairie Island results are discussed in this paper since Monticello results were of similar quality and agreement. No attempt was made in this work to investigate CORETRAN-01 kinetics capability by analyzing plant transients, but these steady-state results form a good foundation for moving in that direction.