ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Donald D. Hines, Rodney L. Grow, Lance J. Agee
Nuclear Technology | Volume 148 | Number 1 | October 2004 | Pages 25-34
Technical Paper | RETRAN | doi.org/10.13182/NT04-A3545
Articles are hosted by Taylor and Francis Online.
As part of an overall verification and validation effort, the Electric Power Research Institute's (EPRIs) CORETRAN-01 has been benchmarked against Northern States Power's Prairie Island and Monticello reactors through 12 cycles of operation. The two Prairie Island reactors are Westinghouse 2-loop units with 121 asymmetric 14 × 14 lattice assemblies utilizing up to 8 wt% gadolinium while Monticello is a General Electric 484 bundle boiling water reactor. All reactor cases were executed in full core utilizing 24 axial nodes per assembly in the fuel with 1 additional reflector node above, below, and around the perimeter of the core. Cross-section sets used in this benchmark effort were generated by EPRI's CPM-3 as well as Studsvik's CASMO-3 and CASMO-4 to allow for separation of the lattice calculation effect from the nodal simulation method. These cases exercised the depletion-shuffle-depletion sequence through four cycles for each unit using plant data to follow actual operations. Flux map calculations were performed for comparison to corresponding measurement statepoints. Additionally, start-up physics testing cases were used to predict cycle physics parameters for comparison to existing plant methods and measurements.These benchmark results agreed well with both current analysis methods and plant measurements, indicating that CORETRAN-01 may be appropriate for steady-state physics calculations of both the Prairie Island and Monticello reactors. However, only the Prairie Island results are discussed in this paper since Monticello results were of similar quality and agreement. No attempt was made in this work to investigate CORETRAN-01 kinetics capability by analyzing plant transients, but these steady-state results form a good foundation for moving in that direction.