ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Michitsugu Mori
Nuclear Technology | Volume 148 | Number 1 | October 2004 | Pages 12-24
Technical Paper | RETRAN | doi.org/10.13182/NT04-A3544
Articles are hosted by Taylor and Francis Online.
Two advanced boiling water reactors (ABWRs) whose electric output power is 1356 MW have been commercially operated since 1996 and 1997 by the Tokyo Electric Power Company (TEPCO) in Japan. Features of an ABWR are reactor internal pumps (RIPs) placed in the lower plenum and downcomer, peripherally bottom-mounted on the reactor pressure vessel - which should require different modeling from the jet pumps and two recirculation pumps in the primary outer-loop recirculations of BWR-5.Efforts focused on modeling and simulating the ABWR with transient analyses by the point-kinetics model with the local reactivity modified by local importance weighting of the squared nodal power during start-up tests using the RETRAN-3D code, version MOD003 without three-dimensional kinetics. The core and reactor pressure vessel including ten ABWR RIPs and the steam lines were modeled, and simulations were carried out for the cases of the one-pump trip test, the changing-setpoint tests, the main-steam-isolation-valve-closure test, and the generator load rejection test with bypass.The analytical simulation with RETRAN-3D/MOD003 well reproduced the measured data of the ABWR in operation for the RIP trip and the transient tests and could demonstrate its validation for applying to the ABWR with modeling of RIPs.