ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Ola Thomson, Ninos S. Garis,†, Imre Pázsit
Nuclear Technology | Volume 120 | Number 1 | October 1997 | Pages 71-80
Technical Paper | Reactor Operation | doi.org/10.13182/NT97-A35432
Articles are hosted by Taylor and Francis Online.
Detecting the vibration and impacting of neutron detectors in boiling water reactor cores is usually attempted from the detector signals. Two such indicators used or suggested earlier are the widening of the vibration peak in the detector noise auto-power spectral density and the deviation from Gaussian ( = “distortion”) of the signal amplitude probability distribution (APD). Quantification of both methods is hindered by the presence of a strong, Gaussian background; thus, it was thought that band-pass filtering around the vibration peak would improve the performance of the methods. This suggestion has been investigated. It turns out that filtering reduces the background, but it also distorts the vibration component of the signal. For good performance, this latter effect must be compensated for. Such methods are elaborated and applied to both peak widening and APD distortion techniques. It was found that application of such techniques makes the kurtosis and the decay ratio associated with the signal suitable to be used as quantitative indicators of impacting. The methods elaborated were also checked by numerical simulations and real measurements with positive results.