ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Bassam I. Shamoun, Michael L. Corradini
Nuclear Technology | Volume 120 | Number 2 | November 1997 | Pages 158-170
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT97-A35424
Articles are hosted by Taylor and Francis Online.
The thermal interaction of certain molten materials such as Al2O3 with water results in vapor explosions with very high (supercritical) pressures and propagation velocities. A quasi-steady-state analysis and a transient analysis of a supercritical vapor explosion in one-dimensional multiphase flow were applied to analyze experimental data of an Al2O3-water fuel/coolant interaction obtained from the KROTOS 26, 28, 29, and 30 tests. The shock adiabatic thermodynamic model and the TEXAS mechanistic model were used to perform this analysis. The predicted results of the initial vapor void fraction and explosion conversion ratio from both models, together with the estimated experimental results, for the KROTOS 26 test were compared.