The operation and design of an inductively heated, bench-scale distillation furnace (retort) are described. The furnace is used as part of a pyrochemical process for the electrometallurgical treatment of spent light water reactor fuel. The focus is on the components that contain the metal melts and vapors. The forerunner of this paper focuses on the design of the induction power system. The equipment was designed to separate volatile from nonvolative metals; after separation, the nonvolatile metals are consolidated into a stillpot product. Twelve experimental runs were conducted; in seven, we used zinc as the distillate, and in five we used zinc-magnesium. In one of the runs, uranium was the stillpot product, and in two runs, copper was used as a substitute for uranium. After solving problems caused by violent evaporation, reboiling of the collected distillate, and blockage of the vapor path, we were able to evaporate the zinc and magnesium with distillate losses <6%. In some cases, the loss was as low as 0.3%. The stillpot product was successfully consolidated. Complete recovery of the stillpot product was achieved in one run.