ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Sushil K. Bhatnagar
Nuclear Technology | Volume 120 | Number 3 | December 1997 | Pages 224-230
Technical Paper | Radiation Protection | doi.org/10.13182/NT97-A35413
Articles are hosted by Taylor and Francis Online.
Penetration shielding design for primary and secondary shield walls in a nuclear power plant proceeds in several iterative cycles. These cycles are needed to refine the conceptual designs for numerous, often conflicting, requirements. These requirements include the following: worker occupancy, in-service inspections, ventilation, pressure and temperature transient controls, equipment qualification, etc. Because the determination of neutron and gamma radiation levels in the containment building of a nuclear power plant requires a three-dimensional calculation, which is both very complicated and expensive, simplified but conservative procedures are needed to provide that input for various other analyses. Once an optimized design is developed, it can be confirmed by either a full three-dimensional analysis or acceptable combinations of discrete ordinates and Monte Carlo methods. The isotropic analog method and its enhancement are presented to provide such an alternative. Included are the methodology, its justification, confirmation, limitations, and suggestions for additional development. This method has already been used for the shielding design of two nuclear power plants and shown to be conservative by a factor of between 2 and 5.