ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Sushil K. Bhatnagar
Nuclear Technology | Volume 120 | Number 3 | December 1997 | Pages 224-230
Technical Paper | Radiation Protection | doi.org/10.13182/NT97-A35413
Articles are hosted by Taylor and Francis Online.
Penetration shielding design for primary and secondary shield walls in a nuclear power plant proceeds in several iterative cycles. These cycles are needed to refine the conceptual designs for numerous, often conflicting, requirements. These requirements include the following: worker occupancy, in-service inspections, ventilation, pressure and temperature transient controls, equipment qualification, etc. Because the determination of neutron and gamma radiation levels in the containment building of a nuclear power plant requires a three-dimensional calculation, which is both very complicated and expensive, simplified but conservative procedures are needed to provide that input for various other analyses. Once an optimized design is developed, it can be confirmed by either a full three-dimensional analysis or acceptable combinations of discrete ordinates and Monte Carlo methods. The isotropic analog method and its enhancement are presented to provide such an alternative. Included are the methodology, its justification, confirmation, limitations, and suggestions for additional development. This method has already been used for the shielding design of two nuclear power plants and shown to be conservative by a factor of between 2 and 5.