ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Dong-Kwon Keum, Chung-Kyun Park, Pil-Soo Hahn, Tjalle T. Vandergraaf
Nuclear Technology | Volume 120 | Number 3 | December 1997 | Pages 211-223
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT97-A35412
Articles are hosted by Taylor and Francis Online.
Modifications have been made to an existing stratified channel contaminant transport model by incorporating hydrodynamic dispersion in each channel. The integrals in the modified model are solved by a numeric method. Gaussian quadrature integration formulas were used to solve the equation, including the Gauss-Laguerre quadrature to deal with the upper infinite limit of the integral. This approach proved to be both accurate and efficient. The effects of physicochemical parameters on the elution breakthrough curve have been studied with this model. The parameters that were considered were (a) the standard deviation of a lognormal distribution of the channel width, (b) longitudinal dispersivity, (c) water velocity, (d) fracture length, (e) surface sorption coefficient, and (f) rock matrix diffusivity. Results from the calculations showed that the hydrodynamic dispersion in each channel caused additional dispersion in the elution profile. A new parameter, which quantifies rock matrix dif fusion and residence time of the solute in the fracture simultaneously, and its reference value are presented. This parameter is useful to determine numerically if the diffusion into the rock matrix is a significant contribution to the transport of the tracer through the fracture. This parameter can also be used in the design of migration experiments intended to observe diffusion into the rock matrix. The modified model has been used to analyze two independent experimental data sets obtained for a conservative tracer, one obtained in an artificial fracture and the other in a natural fracture. The results obtained with this modified model were in good agreement with both sets of experimental results. The dispersivities for both experimental systems were determined by curve fitting, and similar values were obtained for both types of fracture. The values obtained for the natural fracture especially indicated that both local hydrodynamic and channeling dispersion occurred.