ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Yuichiro Asano, Noriko Asanuma, Toshihiko Ito, Makoto Kataoka, Shinya Fujino, Tomoo Yamamura, Wataru Sugiyama, Hiroshi Tomiyasu, Kunihiko Mizumachi, Yasuhisa Ikeda, Yukio Wada, Masami Asou
Nuclear Technology | Volume 120 | Number 3 | December 1997 | Pages 198-210
Technical Paper | Enrichment and Reprocessing System | doi.org/10.13182/NT97-A35411
Articles are hosted by Taylor and Francis Online.
A new reprocessing system for spent nuclear fuels based on a precipitation method is proposed to recover uranium and transuranium elements from spent nuclear fuels in high ratios and to achieve extreme safety without any potential dangers. Experiments were carried out for a simulated fuel solution containing uranium and 17 major elements. The main reprocessing processes are as follows: (a) dissolution of U02 fuel under mild conditions; (b) neutralization of the dissolved fuel solution with Na2C03-NaHC03 mixed solutions, followed by the separation of precipitated fission products by centrifugation; (c) separation of cesium by a precipitation method using a tetraphenylborate ion; and (d) recovery of uranium (U) as a precipitate of the hydrolyzed compound from an alkaline solution. As a result, 99.95% of the U was recovered with the least amount of fission products, i.e., 10-5 g or even less in the recovered 1 g of U with the only exceptions being zirconium and molybdenum.