ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Shahla Keyvan, Mark L. Kelly, Xiaolong Song
Nuclear Technology | Volume 119 | Number 3 | September 1997 | Pages 269-275
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT97-A35402
Articles are hosted by Taylor and Francis Online.
Nuclear fuel must be of high quality before being placed into service in a reactor. Nuclear fuel vendors currently use manual inspection for quality control of the nuclear fuel pellets before they are inserted into the zirconium fuel rods and bundled into assemblies. The feasibility of automating the pellet inspection process using artificial neural networks is examined to improve accuracy, speed, and cost; to reduce employee radiation doses; and to provide defect statistics to the fuel manufacturer. Sample nuclear fuel pellets (252 pellets) are photographed and scanned, and appropriate feature extraction techniques are developed and applied to the scanned images. The extracted features are then used as inputs to a backpropagation neural network. The results indicate that a backpropagation neural network is capable of classifying pellets as good (passing) or bad (failing) with high accuracy.