ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ho Nieh, TVA board members, and nuclear fuel recycling bill head to Senate floor
Nieh
Ho Nieh, the Trump administration’s nominee to be a member of the Nuclear Regulatory Commission, and four new board members of the Tennessee Valley Authority were approved in a vote today by the Senate Environment and Public Works Committee and head to the Senate floor for a final vote.
The committee also voted to advance to the Senate floor the Nuclear REFUEL Act of 2025 (S. 2082), which would smooth the regulatory pathway for recycling used nuclear fuel.
President Donald nominated Nieh on July 30 to serve as NRC commissioner for the remainder of a term set to expire June 30, 2029, which was held by former NRC commissioner Chris Hanson, who Trump fired in June.
Shahla Keyvan, Mark L. Kelly, Xiaolong Song
Nuclear Technology | Volume 119 | Number 3 | September 1997 | Pages 269-275
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT97-A35402
Articles are hosted by Taylor and Francis Online.
Nuclear fuel must be of high quality before being placed into service in a reactor. Nuclear fuel vendors currently use manual inspection for quality control of the nuclear fuel pellets before they are inserted into the zirconium fuel rods and bundled into assemblies. The feasibility of automating the pellet inspection process using artificial neural networks is examined to improve accuracy, speed, and cost; to reduce employee radiation doses; and to provide defect statistics to the fuel manufacturer. Sample nuclear fuel pellets (252 pellets) are photographed and scanned, and appropriate feature extraction techniques are developed and applied to the scanned images. The extracted features are then used as inputs to a backpropagation neural network. The results indicate that a backpropagation neural network is capable of classifying pellets as good (passing) or bad (failing) with high accuracy.