ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Hyoung Tae Kim, Hee Cheon No
Nuclear Technology | Volume 119 | Number 1 | July 1997 | Pages 98-104
Technical Note | Heat Transfer and Fluid Flow | doi.org/10.13182/NT77-A35397
Articles are hosted by Taylor and Francis Online.
The improvement of RELAP5/MOD3.1 code predictive capability for steam condensation on an inclined surface is investigated. In modeling the secondary condensers with RELAP5, two problems were encountered with respect to condensation in vertically stacked tube walls: the capability for turbulent film condensation and the effect of the wall node size on the prediction of condensation heat transfer coefficients (HTCs). The code original model based on the Nus-selt model for laminar film condensation is extended to the turbulent film condensation by introducing two previously developed models into the code. The code is further improved to properly take into account the condensation length over many nodings. To eliminate the dependence on the node size in predicting the condensation HTC of the code, film Reynolds numbers at each node are calculated recursively to track the growing condensate film thickness along the condensation length. The modified version is tested under idealized boundary conditions and with the simulation of secondary condensers and is compared with an analytical solution and the original code. It turns out that the simulation results by this modified version are independent of the node size and are in better agreement with the analytical solution than those by the original one.