ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
Ahmet Bozkurt, Nicholas Tsoulfanidis
Nuclear Technology | Volume 119 | Number 1 | July 1997 | Pages 38-47
Technical Paper | Radiation Protection | doi.org/10.13182/NT77-A35393
Articles are hosted by Taylor and Francis Online.
Gamma-ray dose rate distribution around a pressurized water reactor spent-fuel assembly is studied using the Monte Carlo N-particle transport code (MCNP) version 4a. A detailed rod-by-rod modeling of the assembly is utilized, showing explicitly the fuel, cladding, control rod channels, and the instrumentation tube. A cylindrically distributed source of gamma rays, within every fuel rod, is considered with a seven-group energy spectrum. Dose rates are obtained by tallying the gamma rays at several axial and radial positions outside the assembly. The results indicate that the radial distribution of the dose rate can be represented by a power relationship of the form r−n, where r is the radial distance from the assembly center. Another important conclusion from this study is that the dose rate close to the assembly surface is overestimated if a homogeneous assembly model is used.