ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Yassin A. Hassan, Wael A. Ibrahim
Nuclear Technology | Volume 119 | Number 1 | July 1997 | Pages 11-28
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT77-A35391
Articles are hosted by Taylor and Francis Online.
Turbulent flow is characterized by random fluctuations in the fluid velocity and by intense mixing of the fluid. A wide range of eddies exists in the flow field. Because these eddies carry mass, momentum, and energy, this enhanced mixing can sometimes lead to serious problems, such as tube vibrations in many engineering systems that include fluid-tube bundle combinations. Nuclear fuel bundles and pressurized water reactor (PWR) steam generators are existing examples of fluid-tube bundle combinations in nuclear power plants. One of the critical areas in PWR steam generators is the weld between the tubes and the tube plate. Fluid-induced vibration problems are often discovered during the operation of such systems because some of the fluid-tube interaction characteristics are not fully understood. Large-eddy simulation, incorporated in three-dimensional computer codes, became one of the promising techniques to estimate flow turbulence. An investigation of the complex flow turbulence in tube bundles was carried out. Simulation of flow across tube bundles with various pitch-to-diameter ratios was performed. Power spectral densities of drag and lift coefficients were used for comparison with experimental data. Estimation of flow-length scales and other important turbulence-related parameters were obtained. Finally, important characteristics of the turbulent flow field were presented with the aid offlow visualization, using both vector and vorticity plots and the flow paths of flow tracers embedded in the flow field.