ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Jacopo Buongiorno, Eric P. Loewen, Kenneth Czerwinski, Christopher Larson
Nuclear Technology | Volume 147 | Number 3 | September 2004 | Pages 406-417
Technical Paper | Medium-Power Lead-Alloy Reactors | doi.org/10.13182/NT04-A3539
Articles are hosted by Taylor and Francis Online.
The isotope 210Po is the main product of neutron activation in fast reactors cooled by molten lead-bismuth eutectic (LBE). The isotope 210Po is a pure alpha emitter with a half-life of 138.38 days. For typical values of the neutron flux the 210Po concentration in the coolant can reach 1-10 Ci/kg. While exposure of plant personnel to Po is prevented under normal operating conditions because the primary system is sealed, Po does pose a radiological hazard during maintenance activities for which access to submerged structures is required as well as during accidents resulting in breach of the primary-system barrier. Obviously, continuous removal of Po from the LBE reduces this hazard. Therefore, it is important to understand the mechanisms by which Po is formed in and released from the LBE. We summarize research performed at the Idaho National Engineering and Environmental Laboratory and the Massachusetts Institute of Technology to investigate the basic chemistry of four mechanisms of Po release, which could serve as the basis for a coolant cleanup system in LBE-cooled reactors. The mechanisms explored are lead polonide evaporation, formation of polonium hydride, rare-earth filtering, and alkaline extraction. For the key chemical species involved expressions are given for useful quantities such as formation energy, release, and deposition rates. It is concluded that the most promising removal mechanism is alkaline extraction, although a more systematic investigation of this mechanism is needed.