ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Antonio Campo, Gong Li
Nuclear Technology | Volume 119 | Number 2 | August 1997 | Pages 211-216
Technical Note | Heat Transfer and Fluid Flow | doi.org/10.13182/NT97-A35388
Articles are hosted by Taylor and Francis Online.
The problem of optimizing a cluster of isothermal or isoflux parallel-plate channels where the coolant is a metallic liquid is addressed. The pressure difference is fixed, and laminar forced convection is caused by the simultaneous development of velocity and temperature from free-stream conditions of the liquid. The Fanning friction factor is invariant with the fluid. However, local and streamwise-mean Nusselt number distributions for each heating condition are carefully computed exploiting the physical analogy between transient conduction in a flat plate and steady temperature development inside a parallel-plate channel under the premise of slug flow. The qualitative influence of diminute Prandtl number liquids (Pr = 0.01 and 0.005) is reported in terms of the optimal heat transfer and the optimal plate-to-plate spacing for the two heating conditions employed.