ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Liaquat Ali Khan, Nasir Ahmad
Nuclear Technology | Volume 119 | Number 2 | August 1997 | Pages 201-210
Technical Note | Heat Transfer and Fluid Flow | doi.org/10.13182/NT97-A35387
Articles are hosted by Taylor and Francis Online.
The effect of operating cycle and fuel burnup on the isotopic composition and decay characteristics of irradiated nuclear fuel has been investigated using a standard computer code, KORIGEN. The parameters studied include isotopic compositions of actinides; activities due to the actinides, fission products, and light elements; decay heat; and the spontaneous fission neutron source. Calculations have been performed for a typical swimming pool-type research reactor, using materials test reactor-type low-enriched uranium fuel, for four different operating cycles. A fuel burnup range of 5 to 35% has been considered. The cooling time ranged from a fraction of a second to thousands of years. Results indicate that the amount of plutonium produced is strongly dependent on fuel burnup. It is not significantly affected by the operating cycle. The operating history of the reactor has a strong influence on fission product inventory and decay heat. The main contributors to activity and decay heat for the first two to three centuries are fission products; thereafter, actinides are the main contributors. The activity and decay heat drop drastically during the first day after shutdown. Both alpha activity and the spontaneous fission neutron source are strongly dependent on the operating cycle and fuel burnup. These increase with an increase in the fuel burnup but decrease for a longer power-on cycle.