ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Ralf Wittmaack
Nuclear Technology | Volume 119 | Number 2 | August 1997 | Pages 158-180
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT97-A35384
Articles are hosted by Taylor and Francis Online.
New design features of future reactors are being developed to ensure the integrity of the reactors under severe accident conditions. These features include the spreading of corium with subsequent flooding and cooling. Numerical simulations are performed to reduce the number of necessary large-scale experiments with radioactive material. For this reason, the development, verification, and validation of simulation methods are important foci. A method for predicting three-dimensional free-surface flows of a single-component, incompressible Newtonian fluid is presented. The thermodynamics and discrete phase transitions are simulated also. In addition to the fluid, structural materials are considered as hydrodynamic obstacles and heat structures. The method is applied to several flow, heat transfer, and phase transition problems of water and glycerol and of cerrotru (low-melting Bi-Sn alloy), thermite, and corium melts. The predictions provide a satisfactory representation of the experimental data and analytical solutions. Different physical processes are analyzed, e.g., gravity waves, creeping flows, Bénard convection, and thermodynamic interactions of fluid, structural material, and surroundings. The method is applied to the layout and design of experiments and exvessel corium-retention devices in nuclear reactors.