An objective is to enhance the use of plutonium in conventional or slightly modified pressurized water reactors, while minimizing minor actinide production. Having entirely mixed-oxide-fueled reactors reduces the number of reactors that are affected on plutonium recycling and avoids the need for fuel zoning. However, the overall consumption is <30%, and the mass of minor actinides produced is considerable, representing up to 25 % of the plutonium used. The Advanced Plutonium Fuel Assembly concept, based on a uranium-free plutonium fuel, which achieves high burnups and an increased moderation ratio, enables 60% of the second-generation plutonium to be consumed, while the minor actinides produced only represent 8% of this figure. The heterogeneous design of the fuel assembly, which includes natural uranium or low-enriched uranium fuel rods, guarantees values that suit the physical parameters of the core. The concept was analyzed from a thermo-hydraulic aspect in both rated and accident situations. Technological feasibility is yet to be demonstrated. This study is part of a medium-term strategy for the back end of the fuel cycle.