ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Jae Seung Song, Nam Zin Cho
Nuclear Technology | Volume 119 | Number 2 | August 1997 | Pages 105-111
Technical Paper | Fission Reactor | doi.org/10.13182/NT97-A35379
Articles are hosted by Taylor and Francis Online.
An axial xenon oscillation model is developed for pressurized water reactor analysis. The model employs an equation system for axial difference parameters that is derived from xenon and iodine balance equations coupled with two-group, one-dimensional neutron diffusion equations. To treat nonlinear xenon-flux-coupled terms, the spatial distributions of xenon, iodine, and flux are expanded by the Fourier sine series. The equation with respect to the axial difference parameters can be analytically solved with the initial condition related to axial power difference, which can be measured in the reactor. The axial power difference variation during xenon oscillation is directly obtained, and it provides a prediction of xenon oscillation behavior. The accuracy of the model is verified by benchmark calculations with a three-dimensional reference core calculation code and measured data from a core startup test at Yonggwang Unit 3.