ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Ioannis A. Papazoglou, Michalis D. Christou
Nuclear Technology | Volume 118 | Number 2 | May 1997 | Pages 97-122
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT97-A35371
Articles are hosted by Taylor and Francis Online.
A methodology for the optimization of the shortterm emergency response in the event of a nuclear accident is presented. The method seeks an optimum combination of protective actions in the presence of a multitude of conflicting objectives and under uncertainty. Conflicting objectives arise in the attempt to minimize simultaneously the potential adverse effects of an accident and the associated socioeconomic impacts. Additional conflicting objectives arise whenever an emergency plan tends to decrease a particular health effect, such as acute deaths, while it increases another, such as latent deaths. The uncertainty is due to the multitude of possible accident scenarios and their respective probability of occurrence, the stochastic variability in the weather conditions, and the variability and/or lack of knowledge of the parameters of the risk assessment models. A multiobjective optimization approach is adopted. An emergency protection plan consists of defining a protective action (e.g., evacuation and sheltering) at each spatial cell around the plant. Three criteria (evaluators) are used as the objective functions of the problem, namely, acute fatalities, latent effects, and socioeconomic cost. The optimization procedure defines the “efficient frontier,” i.e., all emergency plans that are not dominated by another in all three criteria. No value trade-offs are necessary up to this point. The most preferred emergency plan is then chosen among the set of efficient plans. Finally, the methodology is integrated into a computerized decision support system, and its use is demonstrated in a realistic application.