ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Ioannis A. Papazoglou, Michalis D. Christou
Nuclear Technology | Volume 118 | Number 2 | May 1997 | Pages 97-122
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT97-A35371
Articles are hosted by Taylor and Francis Online.
A methodology for the optimization of the shortterm emergency response in the event of a nuclear accident is presented. The method seeks an optimum combination of protective actions in the presence of a multitude of conflicting objectives and under uncertainty. Conflicting objectives arise in the attempt to minimize simultaneously the potential adverse effects of an accident and the associated socioeconomic impacts. Additional conflicting objectives arise whenever an emergency plan tends to decrease a particular health effect, such as acute deaths, while it increases another, such as latent deaths. The uncertainty is due to the multitude of possible accident scenarios and their respective probability of occurrence, the stochastic variability in the weather conditions, and the variability and/or lack of knowledge of the parameters of the risk assessment models. A multiobjective optimization approach is adopted. An emergency protection plan consists of defining a protective action (e.g., evacuation and sheltering) at each spatial cell around the plant. Three criteria (evaluators) are used as the objective functions of the problem, namely, acute fatalities, latent effects, and socioeconomic cost. The optimization procedure defines the “efficient frontier,” i.e., all emergency plans that are not dominated by another in all three criteria. No value trade-offs are necessary up to this point. The most preferred emergency plan is then chosen among the set of efficient plans. Finally, the methodology is integrated into a computerized decision support system, and its use is demonstrated in a realistic application.