ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reviewers needed for NRC research proposals
The deadline is fast approaching for submitting an application to become a technical reviewer for the Nuclear Regulatory Commission’s fiscal year 2025 research grant proposals.
Antonino Romano, Pavel Hejzlar, Neil E. Todreas
Nuclear Technology | Volume 147 | Number 3 | September 2004 | Pages 368-387
Technical Paper | Medium-Power Lead-Alloy Reactors | doi.org/10.13182/NT04-1
Articles are hosted by Taylor and Francis Online.
Fertile-free fast lead-cooled modular reactors are proposed as efficient incinerators of plutonium and minor actinides (MAs) for application to advanced fuel cycles devoted to transmutation. Two concepts are presented: (1) an actinide burner reactor, designed to incinerate mostly plutonium and some MAs, and (2) a minor actinide burner reactor, devoted to burning mostly minor actinides and some plutonium. These transuranics are loaded in a fertile-free Zr-based metallic fuel to maximize the incineration rate. Both designs feature streaming fuel assemblies that enhance neutron leakage to achieve favorable neutronic feedback and a double-entry control rod system that reduces reactivity perturbations during seismic events and flattens the axial power profile. A detailed neutronic analysis shows that both designs have favorable neutronic characteristics and reactivity feedback mechanisms that yield passive safety features comparable to those of the Integral Fast Reactor. A safety analysis presents the response of the burners to anticipated transients without scram on the basis of (1) the integral parameter approach and (2) simulations of thermal-hydraulic accident scenario conditions. It is shown that both designs have large thermal margins that lead to safe shutdown without structural damage to the core components for a large spectrum of unprotected transients. Furthermore, the actinide destruction rates are comparable to those of the accelerator transmutation of waste concept, and a fuel cycle cost analysis shows the potential for economical accomplishment of the transmutation mission compared to other proposed actinide-burning options.