ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Kazuya Idemitsu, Ken-ichiro Kuwata, Hirotaka Furuya, Yaohiro Inagaki, Tatsumi Arima
Nuclear Technology | Volume 118 | Number 3 | June 1997 | Pages 233-241
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT97-A35364
Articles are hosted by Taylor and Francis Online.
Diffusivities of cesium in a water-saturated mortar were measured in an attempt to investigate the migration of radionuclides into the matrix of the mortar. The measured penetration profiles of the tracer were composed of two parts. There was a steep slope near the surface and a gradual slope in the mortar interior. This kind of profile has been reported by many researchers. This profile was successfully explained by considering two diffusion paths in the mortar. One diffusion path was through fissures with a width of a few microns, and the other was through the intact mortar network of submicron pores. This model was supported by autoradiography of some cross sections of a mortar specimen. The volume of submicron pores was ∼95% of the total pore volume in the mortar. The order-of-magnitude values for the apparent diffusivities for cesium were 10−2 m2/s through the fissure and 10−14 m2/s through the network of pores. The effective diffusion coefficient for cesium was estimated at ∼10−13 m2/s by using the apparent diffusivities through the fissures, the aperture of the fissures, and the fissure interval. Geometric factors in the two paths were also estimated by using the apparent diffusivity and diffusion coefficients for free ions; they were estimated at ∼0.13 for fissures and ∼0.01 for the mortar matrix. This model was applied to other researchers’ data to estimate the effective diffusion coefficient. This model and estimation method show the consistency of the data from through-diffusion and penetration experiments.