ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Kazuya Idemitsu, Ken-ichiro Kuwata, Hirotaka Furuya, Yaohiro Inagaki, Tatsumi Arima
Nuclear Technology | Volume 118 | Number 3 | June 1997 | Pages 233-241
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT97-A35364
Articles are hosted by Taylor and Francis Online.
Diffusivities of cesium in a water-saturated mortar were measured in an attempt to investigate the migration of radionuclides into the matrix of the mortar. The measured penetration profiles of the tracer were composed of two parts. There was a steep slope near the surface and a gradual slope in the mortar interior. This kind of profile has been reported by many researchers. This profile was successfully explained by considering two diffusion paths in the mortar. One diffusion path was through fissures with a width of a few microns, and the other was through the intact mortar network of submicron pores. This model was supported by autoradiography of some cross sections of a mortar specimen. The volume of submicron pores was ∼95% of the total pore volume in the mortar. The order-of-magnitude values for the apparent diffusivities for cesium were 10−2 m2/s through the fissure and 10−14 m2/s through the network of pores. The effective diffusion coefficient for cesium was estimated at ∼10−13 m2/s by using the apparent diffusivities through the fissures, the aperture of the fissures, and the fissure interval. Geometric factors in the two paths were also estimated by using the apparent diffusivity and diffusion coefficients for free ions; they were estimated at ∼0.13 for fissures and ∼0.01 for the mortar matrix. This model was applied to other researchers’ data to estimate the effective diffusion coefficient. This model and estimation method show the consistency of the data from through-diffusion and penetration experiments.