ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Peter Hofmann, Siegfried J. L. Hagen, Volker Noack, Gerhard Schanz, Leo K. Sepold
Nuclear Technology | Volume 118 | Number 3 | June 1997 | Pages 200-224
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT118-200
Articles are hosted by Taylor and Francis Online.
Integral experiments with 2-m-long pressurized water reactor and boiling water reactor fuel rod bundle simulators containing a maximum of 57 rods (the CORA experimental program) as well as comprehensive single-effects investigations are examined. The physico-chemical material behavior of light water reactor fuel elements up to ∼2700 K under flowing steam is described. Of particular importance is the determination of critical temperatures above which liquid phases form as a result of chemical interactions between the fuel element components and their influence on damage propagation. The results of the experiments show that low-temperature liquid phases form as early as ∼1300 K as a result of chemical interactions of INCONEL grid spacers with the Zircaloy cladding tube, of the absorber materials (Ag-In-Cd) with Zircaloy, and of boron carbide with stainless steel; however, extensive propagation of these interactions over large distances occurs only above 1550 K. Uranium oxide (UO2) fuel can be liquefied (dissolved) by molten metallic Zircaloy, with the formation of a U-Zr-O melt resulting in UO2 relocation. This process can even take place below the melting point of Zircaloy (2040 K) if the melt, generated by chemical reactions with the various core components, contains metallic zirconium. Beyond the melting point of Zircaloy (≥2040 K), the metallic melt dissolves UO2 more strongly; i.e., at a given time, more UO2 is dissolved. In this case, UO2 relocation occurs ∼1000 K below its melting point. The molten materials form coolant channel blockages (crusts) on solidification. In the CORA experimental facility, temperatures necessary to melt the remaining solid ceramic materials, up to ∼3150 K (according to the U-Zr-O phase diagram), were not attained. On the basis of the experimental results and thermodynamic considerations, three distinct temperature regimes can be defined where liquid phases that form in the reactor core give rise to substantial material relocations and different degrees of core damage. Quenching of an overheated fuel element with water from the bottom (simulating flooding of an uncovered reactor core) initially gives rise to further heating of the bundle components as a result of intensive oxidation of metallic constituents, which is associated with the formation of local melts and the additional generation of considerable amounts of hydrogen within a very short period of time.