ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Yoshinori Miyoshi, Takuya Umano, Kotaro Tonoike, Naoki Izawa, Susumu Sugikawa, Shuji Okazaki
Nuclear Technology | Volume 118 | Number 1 | April 1997 | Pages 69-82
Technical Paper | Kiyose Birthday Anniversary Special / Nuclear Criticality Safety | doi.org/10.13182/NT97-A35358
Articles are hosted by Taylor and Francis Online.
A series of critical experiments with 10% enriched uranyl nitrate solution using a cylindrical core tank 60 cm in diameter have been performed with the Static Experiment Critical Facility at the Nuclear Fuel Cycle Safety Engineering Research Facility in the Tokai research establishment of the Japan Atomic Energy Research Institute. In the first series of experiments using the cylindrical core tank, systematic data of the critical height for water-reflected cores and unreflected cores were obtained by changing the uranium concentration of the fuel solution from 313 to 225 g U/ℓ. As the reactivity of each core is controlled only by solution height, these criticality configurations, which have simple cylindrical shapes, are available for the validation of calculation codes used in criticality safety designs of nuclear fuel cycle facilities. The neutron multiplication factors of experimental cores were calculated with the two-dimensional transport code TWOTRAN in the SRAC code system and with the continuous-energy Monte Carlo code MCNP4A, employing the Japanese evaluated nuclear data library JENDL-3.2. The calculations from the combination of these calculation codes and the nuclear data library reproduce the neutron multiplication factors within an error of 0.9% for the experimental configuration of critical cores.