ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Satoru Tsushima, Shinya Nagasaki, Atsuyuki Suzuki
Nuclear Technology | Volume 118 | Number 1 | April 1997 | Pages 42-48
Technical Paper | Kiyose Birthday Anniversary Special / Enrichment and Reprocessing System | doi.org/10.13182/NT97-A35355
Articles are hosted by Taylor and Francis Online.
Photochemical techniques are used for the mutual separation of lanthanide elements. By emitting light from an ultrahigh-pressure mercury lamp to a nitric acid solution that contains fourfold mixtures of lanthanide elements (neodymium, samarium, europium, and gadolinium), (NH4)2SO4, and isopropyl formate, neodymium, samarium, and europium are photoreduced and form Ln2+ sulfates, while gadolinium is not photoreduced and does not coprecipitate. When lanthanum is introduced instead of gadolinium, lanthanum coprecipitates along with neodymium, samarium, and europium. These results are explained by photolyzing Nd-Gd and Nd-La systems for comparison, and the difference in precipitation behaviors between these two systems is explained by the differences in ion size of these elements. Photolysis is also performed for a Nd-Am system. Am3+ is carried along with neodymium and coprecipitated. As a way to decrease the amount of americium carried along with neodymium, americium is photo-chemically oxidized by emitting light from a deuterium lamp as well as from a mercury lamp. The fraction of americium carried with neodymium decreases with the use of this technique. This result is also explained by the differences in ion size of these elements.