ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Toshio Wakabayashi, Katsuro Takahashi, Tsutomu Yanagisawa
Nuclear Technology | Volume 118 | Number 1 | April 1997 | Pages 14-25
Technical Paper | Kiyose Birthday Anniversary Special / Nuclear Fuel Cycle | doi.org/10.13182/NT118-14
Articles are hosted by Taylor and Francis Online.
Systematic parameter studies were implemented to investigate the basic characteristics [plutonium and minor actinide (MA)-burning rate, burnup reactivity loss, Doppler coefficient, sodium void reactivity, maximum linear heat rate, etc.] of plutonium and MA-burning fast reactors and also to clarify the feasibility of such plutonium and MA burner fast reactors. Highly enriched mixed-oxide (MOX) fuels and plutonium fuels without uranium were consideredfor plutonium-burning enhancement. It was found that plutonium consumption rates essentially depend on plutonium enrichment. Both burnup reactivity loss and Doppler coefficient are important criteria for highly enriched MOX fuel cores. Cores without uranium were found to consume the plutonium at a very large burnup rate close to the theoretically maximum value of 110 to 120 kg/TW · h(electric). The introduction of UO2 in an internal blanket is effective in enhancing the Doppler coefficient; it causes a minor increase in the sodium void reactivity in nonuranium cores. The MA transmutation in a fast reactor core has no serious drawbacks in terms of core performance, provided that the homogeneous loading method can be employed with a small fraction of MA fuel (∼5 wt%). Fast reactors have a strong potential for burning plutonium and MA effectively.