ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Gary E. Giles, Jr.
Nuclear Technology | Volume 117 | Number 3 | March 1997 | Pages 306-315
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT97-A35345
Articles are hosted by Taylor and Francis Online.
The safety analysis for the Advanced Neutron Source Reactor (ANSR) required the development of a new analysis technique to determine fuel integrity and to assure avoidance of critical heat flux (CHF) conditions. The ANSR is a research reactor design intended to provide the highest continuous neutron beam intensity of any reactor in the world. Reliance on previous safety analysis techniques such as those used in the High Flux Isotope Reactor would result in a design that would not meet the requirements. A more accurate but still conservative analysis technique was developed for the ANSR safety analyses. This technique, the local analysis technique (LAT), relaxed some of the overly conservative assumptions of previous hot-spot studies by using a large number of detailed analyses. The conditions used in these analyses were spread over the possible distributions found in specific designs. This technique was used to analyze several core designs to produce confidence in the fuel plate integrity that could be damaged by excessive fuel temperatures and avoidance of CHF conditions. This approach can be used for other reactor designs and should allow increases in the operating power levels. Alternatively, the LAT could be used to demonstrate increased safety margins for present operating conditions.