ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Jae-Jun Jeong, Isabelle Dor, Dominique Bestion
Nuclear Technology | Volume 117 | Number 3 | March 1997 | Pages 267-280
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT97-A35341
Articles are hosted by Taylor and Francis Online.
The CATHARE 2 three-dimensional module is assessed in comparison with the Upper Plenum Test Facility downcomer test 7, which was performed to obtain full-scale data on downcomer and lower plenum refill behavior during the refill phase of a loss-of-coolant accident. New discretizations for the equation of motion, named Mods. D and R, are suggested and implemented in the three-dimensional module. Mod. A is also investigated, which defines a new junction void fraction used to calculate interfacial friction. Using the standard and the modified three-dimensional modules, the four experiments, test 7 runs 200 through 203, are simulated with the downcomer nodalized as an 8 × 1 × 8 mesh. Sensitivity calculations associated with interfacial friction, condensation, and nodalization are also performed. The calculation results show that the discretization of the momentum convection is very important in strongly heterogeneous flow conditions. Mod. D + A gives the best results so far, and Mod. R + A yields the smallest scatter in the predicted water deliveries to the lower plenum. The results of the sensitivity calculations show that the interfacial friction coefficient of CATHARE 2 is somewhat overestimated and the 8 × 1 × 8 mesh downcomer is fine enough for test 7.