ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Giuseppe Modolo, Reinhard Odoj
Nuclear Technology | Volume 117 | Number 1 | January 1997 | Pages 80-86
Technical Paper | Enrichment and Reprocessing System | doi.org/10.13182/NT97-A35337
Articles are hosted by Taylor and Francis Online.
According to the current state of the art in reprocessing technology, the 129I contained in spent fuel elements can be completely transferred to the dissolver off-gas and efficiently adsorbed on AgNO3-impregnated silica (AC 6120). For future transmutation, the 129I should again be separated selectively and as completely as possible (>99%) from the AC 6120 adsorption matrix. Experimental studies show that a quantitative recovery of the iodine is possible by wet chemical and thermal processes. Extraction experiments using iodine-loaded AC 6120 with sodium sulfide solution provide recovery rates of 99 ± 1%. Reduction with hydrogen at 500°C, in which gaseous HI was liberated, provided recovery rates of >99%. After the separation of iodine, the reduced AC 6120 can be used again as an adsorbent for molecular iodine.