ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Giuseppe Modolo, Reinhard Odoj
Nuclear Technology | Volume 117 | Number 1 | January 1997 | Pages 80-86
Technical Paper | Enrichment and Reprocessing System | doi.org/10.13182/NT97-A35337
Articles are hosted by Taylor and Francis Online.
According to the current state of the art in reprocessing technology, the 129I contained in spent fuel elements can be completely transferred to the dissolver off-gas and efficiently adsorbed on AgNO3-impregnated silica (AC 6120). For future transmutation, the 129I should again be separated selectively and as completely as possible (>99%) from the AC 6120 adsorption matrix. Experimental studies show that a quantitative recovery of the iodine is possible by wet chemical and thermal processes. Extraction experiments using iodine-loaded AC 6120 with sodium sulfide solution provide recovery rates of 99 ± 1%. Reduction with hydrogen at 500°C, in which gaseous HI was liberated, provided recovery rates of >99%. After the separation of iodine, the reduced AC 6120 can be used again as an adsorbent for molecular iodine.