ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Louis M. Shotkin
Nuclear Technology | Volume 117 | Number 1 | January 1997 | Pages 40-48
Technical Paper | Fission Reactor | doi.org/10.13182/NT97-A35334
Articles are hosted by Taylor and Francis Online.
Almost 20 yr ago, the U.S. Nuclear Regulatory Commission (NRC) thermal-hydraulic code development effort made the transition from a homogeneous equilibrium formulation to a two-fluid formulation. The objective was to introduce a more physically based model so that the code analyst would have to make fewer choices in the input deck to simulate expected phenomena. There were still several options left open to the user, especially the noding for the simulation. Recent experience with NRC analyses, as well as with International Standard Problems, has shown that there can still be a considerable “user effect” in the use of even the two-fluid codes. Two specific examples are given. Using the RELAP5 code as a specific prototype to focus the discussion, examples are given of the choices currently available to the analyst. Similar choices are available in almost all thermal-hydraulic system codes. These example choices serve to show that even though thermal-hydraulic system codes are reaching a certain state of maturity, the user must still make many choices in setting up an input deck or in running a calculation. There are several pitfalls that the user can encounter, and there are good practices that can avoid many of these pitfalls. Specific examples of current practices for minimizing pitfalls and increasing good practices are discussed. They apply to any thermal-hydraulic system code. These include the following: training and mentoring for the code analyst; user guidelines documentation; internal review and quality assurance of the input deck by knowledgeable individuals; use of standard noding; and fixed noding for each test facility and reactor system. Guidance for the average code analyst is provided in terms of common pitfalls typically encountered and suggestions for good practices in choosing input deck options.