ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Travis W. Knight, G. Ronald Dalton, James S. Tulenko
Nuclear Technology | Volume 117 | Number 2 | February 1997 | Pages 255-266
Technical Paper | Radiation Protection | doi.org/10.13182/NT97-A35330
Articles are hosted by Taylor and Francis Online.
A virtual reality system was developed for computational and graphical modeling and simulation of radiation environments. This system, called Virtual Radiation Fields (VRF), demonstrates the usefulness of radiological analysis in simulation-based design for predicting radiation doses for robotic equipment and personnel working in a radiation environment. The system was developed for use in determining the radiation doses forobotic equipment to be used in tank-waste retrieval operations at the Hanford National Laboratory. As a reference case, specific application is made to simulate cleanup operations for Hanford tank C-106. A three-dimensional model representation of the tank and its predicted radiation levels are presented and analyzed. Tank cleanup operations were simulated to understand how radiation levels change during the cleanup phase and to predict cumulative radiation doses to robotic equipment to aid in the development of maintenance and replacement schedules.