ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Masaaki Mori, Mitsuru Kawamura, Akio Yamamoto
Nuclear Technology | Volume 117 | Number 2 | February 1997 | Pages 171-183
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT97-A35323
Articles are hosted by Taylor and Francis Online.
Results are presented of a conceptual design study of a transuranium (TRU) fuel assembly consisting of only plutonium and minor actinide (MA) oxides for transmutation of MAs in a pressurized water reactor (PWR). The average plutonium content of the TRU transmutation fuel assembly in this study is 38 wt% Putot, and the average MA content is 62 wt%. The fuel rod arrangement and the plutonium content are optimized to suppress the internal power peaking in the fuel assembly. Core characteristics and TRU inventory change are evaluated for an 870-MW(electric) PWR core loaded heterogeneously with a few TRU transmutation fuel assemblies. The maximum loading of the TRU transmutation fuel is limited to nine assemblies to maintain a negative moderator temperature coefficient at the beginning of cycle, while satisfying a cycle length of 15.2 GWd/tonne U. By loading nine TRU transmutation fuel assemblies, the total MA inventory in the core decreases by —65 kg/cycle, which is approximately equivalent to that produced from three UO2 reactors. The heterogeneous loading of a few fuel assemblies with highly concentrated TRU in a PWR is found to be feasible for the effective transmutation of MAs while maintaining reactor safety.