ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Illinois legislature lifts ban on nuclear energy, funds clean energy
The Illinois General Assembly passed a clean energy bill on October 30 that would, in part, lift a 30-year moratorium on new nuclear energy in the state and create incentives for more energy storage.
R. Krieg
Nuclear Technology | Volume 117 | Number 2 | February 1997 | Pages 151-157
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT97-A35321
Articles are hosted by Taylor and Francis Online.
The mechanical processes during the expansion phase of a steam explosion with intimately fragmented liquid particles is investigated based on elementary principles and analytical solutions. During a short load pulse, the different densities of the water and the melted particles lead to different velocities. After the load pulse, viscosity effects lead to a slow down of the higher velocities and to a corresponding reconversion of the kinetic energy of the mixture into thermal energy. It is shown that both effects are proportional to each other. The ratio between the residual and the applied mechanical energy is defined as the mechanical efficiency of the steam explosion. Using data typical for a steam explosion in a pressurized water reactor, mechanical efficiencies of <50% are estimated. Considering that the thermodynamic efficiencies are quite limited, the very low conversion rates from thermal energy into mechanical energy observed during steam explosion experiments can be more easily understood.