ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Thomas J. Downar, Jen-Ying Wu, John Steill, Raghunandan Janardhan
Nuclear Technology | Volume 117 | Number 2 | February 1997 | Pages 133-150
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT97-A35320
Articles are hosted by Taylor and Francis Online.
High-fidelity simulation of nuclear reactor accidents such as the rupture of a main steam line in a pressurized water reactor (PWR) requires three-dimensional core hydrodynamics modeling because of the strong effect channel cross flow has on reactor kinetics. A parallel nested Krylov linear solver was developed and implemented in the RETRAN-03 reactor systems analysis code to make such high-fidelity core modeling practical on engineering workstations. Domain decomposition techniques were also applied to the RETRAN-03 solution algorithm and demonstrated using a distributed memory parallel computer. Applications were performed for a four-loop Westinghouse PWR steam-line-break accident, and performance improvements of over a factor of 30 were achieved for models with 25 flow channels in the core. Larger models (e.g., 104-core channels), previously inaccessible because of memory limitations, were also solved with practical execution times.