ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE signs two more OTAs in Reactor Pilot Program
This week, the Department of Energy has finalized two new other transaction agreements (OTAs) with participating companies in its Reactor Pilot Program, which aims to get one or two fast-tracked reactors on line by July 4 of this year. Those companies are Terrestrial Energy and Oklo.
Alex Galperin, Gilad Raizes
Nuclear Technology | Volume 117 | Number 2 | February 1997 | Pages 125-132
Technical Paper | Fission Reactor | doi.org/10.13182/NT97-A35319
Articles are hosted by Taylor and Francis Online.
The possibility exists of utilizing pressurized water reactor (PWR) power plants of current technology for efficient and cost-competitive incineration of excess plutonium. Several plutonium-based fuel cycle options were considered, i.e., pure 239Pu or reactor-grade plutonium as a fissile component and natural uranium or thorium as a fertile component of the fuel. A typical PWR was chosen as the base for detailed analysis and comparison of all investigated fuel cycle options. A series of calculations was carried out for each of the fuel cycle options generating “equilibrium” cycles of equal length. Results of the design analysis and comparison of main performance parameters were used to compare different fuel options. Material mass balances were calculated to evaluate the plutonium incineration potential of the considered options. A potential of efficient reduction of excess plutonium was demonstrated for all considered fuel options. The thorium-based fuel cycles were found especially effective for destruction of fissile isotopes of plutonium (>1000 kg/yr). This was partially compensated by the buildup of 233U isotope. One of the important conclusions of this work is that significant amounts of fissile plutonium may be incinerated in thorium-based cycles and that 233U may be denatured by addition of modest amounts of natural uranium. Preliminary economic evaluations indicate that plutonium incineration may be carried out in existing PWRs without economic penalty and may, therefore, present a viable alternative to other plutonium disposition methods.