ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Won-Jin Cho, Jae-Owan Lee, Pil-Soo Hahn, Kwan-Sik Chun
Nuclear Technology | Volume 116 | Number 1 | October 1996 | Pages 115-126
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT96-A35316
Articles are hosted by Taylor and Francis Online.
Radionuclide release from an engineered barrier in a low- and intermediate-level waste repository is evaluated. The results of experimental studies conducted to determine the radionuclide diffusion coefficients and the hydraulic conductivities of calcium bentonite and crushed granite mixtures are presented. The hydraulic conductivity of the mixture is relatively low even at low dry density and clay content, and the principal mechanism of radionuclide migration through the mixture is diffusion. The measured values of apparent diffusion coefficients in calcium bentonite with a dry density of 1.4 Mg/m3 are of the order of 10-13 to 10-12 m2/s for cations and 10-11 m2/s for iodine. These values are similar to those in sodium bentonite. The radionuclide release rates from the engineered barrier composed of the concrete structure and the clay-based backfill were calculated. Carbon-14 and 99Tc are the important nuclides; however, their maximum release rates are <10-5 GBq/yr. To quantify the effect of uncertainties of input parameters on the radionuclide release rates, Latin Hypercube sampling was used, and the ranges of release rates were estimated statistically with a confidence level of 95%. The uncertainties of the assessment results of the radionuclide release rate are larger in the case of the sorbing nuclides such as 137Cs. Finally, the sensitivity of the input parameter to release rate is also evaluated.