ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Güngör Gündüz, İbrahım Uslu, Hasan H. Durmazuçar
Nuclear Technology | Volume 116 | Number 1 | October 1996 | Pages 78-90
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT96-A35313
Articles are hosted by Taylor and Francis Online.
Pure urania- and urania-gadolinia-containing fuel pellets were coated with boron nitride (BN) to improve the physical and neutronic properties of the fuel. The BN coating seems to have a technological advantage over zirconium-diboride coating. The BN is chemically inert, corrosion resistant, withstands rapid temperature changes, and has a high thermal conductivity. Since gadolinia fuel has low thermal conductivity, the gad-olinia content can be lowered in the fuel by coating it with BN. In fact, the existence of two burnable absorbers in a fuel introduces desired nuclear properties since gadolinia is a fast-burning and boron a slow-burning element. The BN was deposited on fuel from two different sources, (a) from the reaction of boron trichloride (BCl3) and ammonia (NH3) at 875 K and (b) from the decomposition of trimethylamine borate complex at 1200 K. The infrared and X-ray diffraction (XRD) spectra of BN from both precursors agreed with the available data in the literature. However BN powder from borane complex had a shifted XRD peak due to the presence of carbonaceous material in the structure. The BN powder-coated fuels were heated to 1400,1525, and 1600 K to sinter the BN. The examination under scanning electron microscope showed that grainy, rodshaped and layered BN coatings were achieved. Rodshaped structures were usually seen on gadolinia fuels. The increased thickness of coating favors the formation of a glassy looking layer. The BN from a borane complex seems to form a layered structure more easily than the BN from BCl3. The BN coated the surface of the fuels, and it did not penetrate into the fuels.