ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Yuh-Ming Ferng, Tay-Jian Liu, Chien-Hsiung Lee
Nuclear Technology | Volume 116 | Number 1 | October 1996 | Pages 66-77
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35312
Articles are hosted by Taylor and Francis Online.
Thermal-hydraulic responses in the station blackout experiment conducted at the IIST facility are simulated through the use of the advanced system code RELAP5/MOD3. Typical behaviors occurring in the IIST station blackout transient are characterized by secondary boiloff, primary saturation and pressurization, and subsequent core uncovery and heatup. As the coolant inventory within the steam generator secondary system boils dry, the primary system pressure increases as a result of degradation of the heat removal ability of the steam generator secondary side. This pressurization phenomenon causes the pressurizer safety valve to open and the primary coolant to deplete through the valve, causing the core to eventually become uncovered. The same response can be exactly simulated by the current model. The current calculated results show fairly good agreement with the experimental data, but the timing of the events occurring in the station blackout transient is calculated earlier than the measured value. The overall comparison of key parameters between the calculated results and IIST test data, however, reveals that the current RELAP5/MOD3 model can provide reasonable station blackout modeling for simulating longterm system behavior.