ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Charles W. Forsberg, James C. Conklin
Nuclear Technology | Volume 116 | Number 1 | October 1996 | Pages 55-65
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35311
Articles are hosted by Taylor and Francis Online.
The temperature-initiated passive cooling system (TIPACS) is a new reactor containment cooling system that is applicable to multiple reactor types. TIPACS, which transfers heat from a hot, insulated system to a cooler, external environment, has five defining characteristics: It has efficient heat transfer, is passive (i.e., no moving mechanical components), has a thermal switch mechanism that allows heat transfer only above a preset temperature, has one-way (heat diode) heat transfer from the internal warm system to ambient, and is suitable to use with any size power reactor. TIPACS consists of two subsystems: a heat transfer system (HTS) and a temperature control system (TCS). The HTS in full operation is a single-phase, natural-circulation system that uses carbon dioxide (CO2) above its vapor-liquid critical point (T > 31°C; P > 72.85 atm) as the heat transfer fluid. The TCS is a passive device that blocks the flow of CO2 if the interior containment temperature drops below a preset temperature, which is between the vapor-liquid critical point and ∼15°C below the vapor-liquid critical temperature of CO2. The preset temperature is determined by the system hardware design. The control mechanism is driven only by the change of fluid properties near the critical point (i.e., there are no active mechanical components)