ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Benjamin Fischer, Marci Smolinski, Jacopo Buongiorno
Nuclear Technology | Volume 147 | Number 2 | August 2004 | Pages 269-283
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT04-A3531
Articles are hosted by Taylor and Francis Online.
As a water-cooled nuclear system with a direct thermal cycle, the supercritical-water-cooled reactor (SCWR) shares with the boiling water reactor (BWR) the issue of coolant activation and transport of the coolant activation products to the turbine and balance of plant (BOP). Consistent with the BWR experience, the dominant nuclide contributing to the SCWR coolant radioactivity at full power is 16N, which is produced by an (n,p) reaction on 16O. In this paper the production and decay of 16N in the SCWR coolant circuit along with the shielding requirements imposed on the BOP are analyzed and compared with those in a BWR with a similar thermal power rating. A simple control-mass approach is adopted in which the 16N inventory in a unit mass of coolant is tracked as the coolant flows in the SCWR and BWR primary systems, which are divided into several compartments (e.g., core, lower plenum, downcomer, etc.) of known volume, mass flow rate, and neutron flux. The values of the neutron flux and (n,p) cross section in the SCWR and BWR cores are calculated by means of full-length radially reflected Monte Carlo eigenvalue models of the SCWR and BWR fuel assemblies. The results are as follows: The 16N activities in the steam lines of the BWR with normal water chemistry, in the BWR with hydrogen water chemistry, and in the SCWR are about 40, 180, and 380 Ci/g, respectively. The calculated BWR values compare well with the trends and ranges found in the literature. The SCWR 16N concentration is significantly higher than that in the BWR for the following four reasons:1. The coolant transit time in the SCWR core is about twice that in the BWR core.2. The neutron flux is higher in the SCWR because of the higher power density.3. The slow coolant pass in the water rods produces a significant 16N activity at the SCWR core inlet.4. In the SCWR all the 16N generated in the core is sent to the steam lines because there is no recirculation within the vessel.A simple gamma attenuation model shows that the higher 16N activity in the SCWR results in shielding requirements only up to 10% higher than for the BWR with hydrogen water chemistry. However, because of the higher SCWR electric power, the specific shielding costs per unit of electric power associated with 16N are expected to be similar to or better than that for BWRs.