ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Yuh-Ming Ferng, Chien-Hsiung Lee
Nuclear Technology | Volume 116 | Number 1 | October 1996 | Pages 19-33
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35309
Articles are hosted by Taylor and Francis Online.
The simulation capabilities of RELAP5/MOD3 are analyzed and assessed in comparison with the IIST experiments conducted to investigate the system response to the loss of the residual heat removal (RHR) system during midloop operation. Two IIST experiments are simulated; a one-loop test under closed system conditions and a three-loop test with a vent at the top of the pressurizer. Once the RHR cooling system is lost and if alternate heat sinks are not established in time, the primary system will be heated up by the decay power, causing core boiling, system pressurization, and potential core uncovery and fuel heatup. The predicted responses of system parameters by the current model show reasonable agreement with the experimental data. These key parameters consist of the system pressure transient, temperature histories, and variation in the active heat transfer length within the steam generator. The liquid flooding in the pressurizer and the steam generator can also be captured in the current simulation. A periodic fill-and-down cycle developed in the steam generator U-tubes has been observed in the IIST measured data of oscillatory differential pressure across the steam generator. This phenomenon is not simulated in the calculation. However, the calculated differential pressure will follow the experimental trend and agree qualitatively with the measured data averaged over one fill-and-down cycle. As shown in the comparison of the calculated and experimental data, the overall system responses to the loss-of-RHR system event during midloop operation can be appropriately simulated by the current RELAP5/MOD3 model.