ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Tsuyoshi Misawa, Seiji Shiroya, Keiji Kanda
Nuclear Technology | Volume 116 | Number 1 | October 1996 | Pages 9-18
Technical Paper | Fission Reactor | doi.org/10.13182/NT96-A35308
Articles are hosted by Taylor and Francis Online.
Experiments on the reactivity worth of beryllium metal were performed using the Kyoto University Critical Assembly, and they were analyzed to examine the validity of the computational method to treat (n,2n) reactions in calculations. The experimental results demonstrated that beryllium metal has positive reactivity worth compared with graphite. In the analysis, (n,2n) reactions were treated as modifying scattering cross sections in a transport calculation, whereas both scattering and absorption cross sections should be modified in a diffusion calculation. The results of calculations for the reactivity worth of beryllium agreed with experimental data within a few percent in the calculated-to-experimental ratio. Calculated results indicated that (n,2n) reactions of beryllium contribute by ∼85% to the positive reactivity worth compared with graphite in these experiments at a thermal reactor. Moreover, through the improved neutron and gamma-ray coupled calculation, the effect of (γ,n) reactions of beryllium on reactivity was estimated. It was found that (γ,n) reactions of beryllium can be negligible so far as this reactivity worth is concerned.