ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Tsuyoshi Misawa, Seiji Shiroya, Keiji Kanda
Nuclear Technology | Volume 116 | Number 1 | October 1996 | Pages 9-18
Technical Paper | Fission Reactor | doi.org/10.13182/NT96-A35308
Articles are hosted by Taylor and Francis Online.
Experiments on the reactivity worth of beryllium metal were performed using the Kyoto University Critical Assembly, and they were analyzed to examine the validity of the computational method to treat (n,2n) reactions in calculations. The experimental results demonstrated that beryllium metal has positive reactivity worth compared with graphite. In the analysis, (n,2n) reactions were treated as modifying scattering cross sections in a transport calculation, whereas both scattering and absorption cross sections should be modified in a diffusion calculation. The results of calculations for the reactivity worth of beryllium agreed with experimental data within a few percent in the calculated-to-experimental ratio. Calculated results indicated that (n,2n) reactions of beryllium contribute by ∼85% to the positive reactivity worth compared with graphite in these experiments at a thermal reactor. Moreover, through the improved neutron and gamma-ray coupled calculation, the effect of (γ,n) reactions of beryllium on reactivity was estimated. It was found that (γ,n) reactions of beryllium can be negligible so far as this reactivity worth is concerned.