ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Stanislav P. Uryasev, Pranab K. Samanta
Nuclear Technology | Volume 116 | Number 2 | November 1996 | Pages 245-256
Technical Paper | Reactor Operation | doi.org/10.13182/NT96-A35304
Articles are hosted by Taylor and Francis Online.
Failure-dependent testing implies a test of redundant components (or trainsj when the failure of one component has been detected. The purpose of such testing is to detect any common-cause failures (CCFs) of multiple components so that a corrective action, such as repair or plant shutdown, can be taken to reduce the residence time of multiple failures. This type of testing focuses on reducing the conditional risk of CCFs. Formulas are developed for calculating the conditional failure probability of a two-train system with different test, repair, and shutdown strategies. A methodology is presented, with an example calculation, showing the risk effectiveness offailure-dependent strategies for emergency diesel generators in nuclear power plants. Four alternative actions after the identification of a failure of one component are analyzed: (a) not carrying out any additional testing, (b) testing the redundant components and shutting down the plant if a CCF is present, (c) emergency repair of the failed component in a given time (less than the allowed outage time), and (d) additional testing of redundant components after the repair of the failed component.