ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Chia-Lin W. Hsu, James A. Ritter
Nuclear Technology | Volume 116 | Number 2 | November 1996 | Pages 196-207
Technical Paper | Enrichment and Reprocessing System | doi.org/10.13182/NT96-A35300
Articles are hosted by Taylor and Francis Online.
At the Savannah River Site, the Defense Waste Processing Facility (DWPF) was constructed to vitrify high-level radioactive liquid waste in borosilicate glass for permanent storage. Formic acid, which serves as both an acid and a reducing agent, is used to treat the washed alkaline sludge during melter feed preparation primarily to improve the processability of the feed and to reduce mercury to its zero state for steam stripping. The high-level sludge is composed of many transition metal hydroxides. Among them, there are small quantities of platinum group metals such as ruthenium, rhodium, and palladium that are fission products. During the treatment of simulated sludge with formic acid, significant amounts of hydrogen were generated when the platinum group metals were included in the sludge. Apparently the noble metals in the sludge were reduced to their zero states and caused formic acid to decompose catalytically into hydrogen and carbon dioxide, usually with an induction period. The production of hydrogen gas presented the DWPF with a safety issue. Therefore, the objective of this research was to gain a fundamental understanding of what controlled the hydrogen evolution so that a practical solution to the safety issue could be obtained. A bench-scale parametric study revealed the following: increasing the amount of formic acid added to the sludge increased the hydrogen generation rate dramatically; once the catalysts were activated, the hydrogen generation rate decreased significantly with a lowering of the temperature of the sludge; the relative catalytic activities of the noble metals in the sludge decreased in the following order: rhodium >;ruthenium ≫ palladium; ammonium ions were generated catalytically from the reaction between formic acid and nitrate; and when present, the noble metals caused higher upward drifts of the sludge pH. Based on these bench-scale results, in conjunction with a pilot-scale study, a forced air purge and hydrogen monitoring system, along with a temperature controlled safety shutdown algorithm, were developed.