ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
Alan S. Icenhour, L. M. Toth, Huimin Luo
Nuclear Technology | Volume 147 | Number 2 | August 2004 | Pages 258-268
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT04-A3530
Articles are hosted by Taylor and Francis Online.
Experiments have been performed in our laboratory on water sorption and radiolysis for uranium oxides. For the water sorption experiments, uranium oxide samples were prepared and exposed to known levels of humidity to establish the water uptake rate. Subsequently, the amount of water removed was studied by heating samples in an oven at fixed temperatures and by differential thermal analysis/thermogravimetric analysis. It was demonstrated that heating at 650°C adequately removes all moisture from the samples. Uranium-238 oxides were irradiated in a 60Co source and in the high-gamma-radiation fields provided by spent nuclear fuel elements of the High Flux Isotope Reactor. For hydrated samples of UO3, the primary gas produced was H2; however, the maximum pressure increase reached a steady-state value of ~500 torr (10 psi). This H2 production appears to be a function of the dose and the amount of water present. Oxygen in the hydrated UO3 sample atmosphere was typically depleted, and no significant pressure rise was observed. Heat treatment of the UO3xH2O at 650°C results in conversion to U3O8 and eliminates the H2 production. For all of the U3O8 samples loaded in air and irradiated with gamma radiation, a pressure decrease was seen and little, if any, H2 was produced - even for samples with up to 9 wt% moisture content. Hence, these results demonstrated that the efforts to remove trace moisture from U3O8 are not necessary to avoid pressurization of stored uranium oxides caused by gamma-induced radiolysis. In fact, this system can tolerate several percent of sorbed moisture.