ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Alan S. Icenhour, L. M. Toth, Huimin Luo
Nuclear Technology | Volume 147 | Number 2 | August 2004 | Pages 258-268
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT04-A3530
Articles are hosted by Taylor and Francis Online.
Experiments have been performed in our laboratory on water sorption and radiolysis for uranium oxides. For the water sorption experiments, uranium oxide samples were prepared and exposed to known levels of humidity to establish the water uptake rate. Subsequently, the amount of water removed was studied by heating samples in an oven at fixed temperatures and by differential thermal analysis/thermogravimetric analysis. It was demonstrated that heating at 650°C adequately removes all moisture from the samples. Uranium-238 oxides were irradiated in a 60Co source and in the high-gamma-radiation fields provided by spent nuclear fuel elements of the High Flux Isotope Reactor. For hydrated samples of UO3, the primary gas produced was H2; however, the maximum pressure increase reached a steady-state value of ~500 torr (10 psi). This H2 production appears to be a function of the dose and the amount of water present. Oxygen in the hydrated UO3 sample atmosphere was typically depleted, and no significant pressure rise was observed. Heat treatment of the UO3xH2O at 650°C results in conversion to U3O8 and eliminates the H2 production. For all of the U3O8 samples loaded in air and irradiated with gamma radiation, a pressure decrease was seen and little, if any, H2 was produced - even for samples with up to 9 wt% moisture content. Hence, these results demonstrated that the efforts to remove trace moisture from U3O8 are not necessary to avoid pressurization of stored uranium oxides caused by gamma-induced radiolysis. In fact, this system can tolerate several percent of sorbed moisture.